Advance Java BCA 6" Semester

EXAM BASED QUESTIONS WITH ANSWERS

1. Define inheritance. Discuss the benefits of using inheritance. Discuss multiple
inheritance with suitable example.(1+2+7)

Inheritance in Java

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a new class
(subclass or child class) to inherit properties and behaviors (fields and methods) from an existing class
(superclass or parent class). This concept promotes code reusability and establishes a natural hierarchy
between classes.

Benefits of Using Inheritance

1. Code Reusability: Inheritance allows you to reuse existing code from a parent class, reducing redundancy
and improving maintainability.

2. Method Overriding: It enables a subclass to provide a specific implementation of a method that is
already defined in its parent class.

3. Polymorphism: Inheritance facilitates polymorphism, where a subclass can be treated as an instance of
its parent class, allowing for more flexible and dynamic code.

4. Extensibility: You can extend existing classes to create new functionality without modifying the original
class.

5. Modularity: Inheritance encourages a modular approach to program design, making code easier to
manage and understand.

6. Data Abstraction: It helps in achieving data abstraction by allowing the use of general classes that can be
specialized into more specific classes.

7. Maintenance: Enhancements and bug fixes in a parent class automatically propagate to all subclasses,
simplifying maintenance.

Multiple Inheritance in Java

Java does not support multiple inheritance directly through classes to avoid the complexity and ambiguity
that arises from the "Diamond Problem." However, Java allows multiple inheritance through interfaces.

Example of Multiple Inheritance Using Interfaces:
// Interface 1

interface Animal {

void eat();

}

// Interface 2
interface Bird {
void fly();

}

// A class that implements both interfaces
class Sparrow implements Animal, Bird {
@Override

public void eat() {

System.out.printIn("Sparrow is eating.");

}

@Override

public void fly() {
System.out.printIn("Sparrow is flying.");
}

}

// Main class

public class Main {

public static void main(String[] args) {
Sparrow sparrow = new Sparrow();
sparrow.eat(); // Output: Sparrow is eating.
sparrow.fly(); // Output: Sparrow is flying.

}

}

2. Why do we need event handling? Discuss the process of handling events with example.
Differentiate event listener interface with adapter class. (3+4+3)

Why Do We Need Event Handling?

Event handling is a crucial concept in software development, especially in graphical user interfaces (GUIs)
and real-time applications. It allows programs to respond to user interactions or other types of events (such
as mouse clicks, keyboard presses, or system-generated events). Without event handling, applications
would be static, unable to interact dynamically with users or the environment.

Key reasons for event handling include:

1. Interactivity: Event handling enables the creation of interactive applications where the program can
respond to user actions.

2. Asynchronous Processing: It allows applications to process events asynchronously, ensuring that the user
interface remains responsive.

3. Custom Responses: Event handling allows developers to define custom behaviors for different events,
making applications more versatile and user-friendly.

Process of Handling Events

Event handling in Java involves the following steps:

1. Event Source: The component (like a button) that generates an event when interacted with.

2. Event Object: When an event occurs, an event object is created containing details about the event (e.g.,
“ActionEvent’, "MouseEvent’).

3. Event Listener: An object that listens for events and responds accordingly. It must implement a specific
event listener interface.

4. Event Handling Code: The code inside the event listener that defines what should happen when the
event occurs.

Example: Handling a Button Click Event
import java.awt.;

import java.awt.event.;

public class ButtonClickExample.extends.Frame implements.ActionListener{

// Create a button

Button button;

ButtonClickExample() {
button = new Button("Click Me");
button.setBounds(100, 100, 80, 30);

button.addActionListener(this); // Register the button with the event listener

add(button); // Add button to the frame
setSize(300, 200);
setLayout(null);

setVisible(true);

}

// Event handler method
public void actionPerformed(ActionEvent e) {

System.out.printIn("Button clicked!");

}

public static void main(String[] args) {
new ButtonClickExample();

}

}

Event Listener Interface vs. Adapter Class

Event Listener Interface:

1. Definition: An event listener interface is an interface that must be implemented by a class to handle
specific events. Examples include “ActionListener’, "Mouselistener’, "KeyListener".

2. Multiple Methods: If an event listener interface has multiple methods (e.g., "Mouselistener’), the
implementing class must provide implementations for all of them, even if some are not needed.

3. Direct Implementation: The implementing.class directly handles the events by overriding the required
methods.

Example:

“java

class MyMouselListener implements MouselListener {

public void mouseClicked(MouseEvent e) { / handle click / }
public void mouseEntered(MouseEvent e) { / handle enter / }
public void mouseExited(MouseEvent e) { / handle exit / }
public void mousePressed(MouseEvent e) { / handle press / }

public void mouseReleased(MouseEvent e) { / handle release / }

}

Adapter Class:

1. Definition: An adapter class is an abstract class that provides default (empty) implementations for all
methods of an event listener interface. A developer can extend the adapter class and override only the
methods they need.

2. Convenience: Adapter classes are useful when you don’t want to implement all methods of a listener
interface, only the ones that are needed.

3. Simplified Implementation: The subclass only needs to override the methods relevant to the event
handling.

Example:

“java

class MyMouseAdapter extends MouseAdapter {
@Override

public void mouseClicked(MouseEvent e) {

// handle click event only

}

}

Key Differences:

- Implementation Requirement: Event listener interfaces require implementing all methods, while adapter
classes allow implementing only the needed methods.

- Ease of Use: Adapter classes simplify event handling when only a subset of listener methods is required.

- Inheritance: Using an adapter class involves inheritance, meaning the class that handles events must
extend the adapter class. This limits multiple inheritances, which is not an issue with interfaces.

3. Write a program using swing components to find simple interest. Use text fields for
inputs and output. Your program should display output if the user clicks a button. (10)

Here's a concise Java program using Swing components to calculate simple interest. The program uses text
fields for input and output, and the result is displayed when the user clicks a button.

import javax.swing.;

import java.awt.event.;

public class SimplelnterestCalculator {

public static void main(String[] args) {

// Create a frame

JFrame frame = new JFrame("Simple Interest Calculator");
frame.setSize(300, 200);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setLayout(null);

// Create and position labels and text fields
JLabel principalLabel = new JLabel("Principal:");
principallLabel.setBounds(20, 20, 80, 25);
JTextField principalField = new JTextField();

principalField.setBounds(100, 20, 150, 25);

JLabel rateLabel = new JLabel("Rate (%):");
ratelLabel.setBounds(20, 60, 80, 25);
JTextField rateField = new JTextField();

rateField.setBounds(100, 60, 150, 25);

JLabel timelLabel = new JLabel("Time (years):");
timelabel.setBounds(20, 100, 80, 25);
JTextField timeField = new JTextField();

timeField.setBounds(100, 100, 150, 25);

// Create and position the button
JButton calculateButton = new JButton("Calculate");

calculateButton.setBounds(100, 140, 150, 25);

// Create and position the result field (non-editable)
JTextField resultField = new JTextField();
resultField.setBounds(20, 170, 230, 25);

resultField.setEditable(false);

// Add action listener to the button
calculateButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// Parse input values

double principal = Double.parseDouble(principalField.getText());
double rate = Double.parseDouble(rateField.getText());

double time = Double.parseDouble(timeField.getText());

// Calculate simple interest

double interest = (principal rate time) / 100;

// Display the result

resultField.setText("Simple Interest: " + interest);
}

});

// Add components to-the frame

frame.add(principalLabel);

frame.add(principalField);
frame.add(ratelLabel);
frame.add(rateField);
frame.add(timelLabel);
frame.add(timeField);
frame.add(calculateButton);

frame.add(resultField);

// Set the frame visibility
frame.setVisible(true);

}

}

4. Write an object oriented program to find area and perimeter of rectangle. (5)

Here’s a simple object-oriented program in Java to find the area and perimeter of a rectangle:

class Rectangle {
// Instance variables for the dimensions of the rectangle
private double length;

private double width;

// Constructor to initialize the length and width
public Rectangle(double length, double width) {
this.length = length;

this.width = width;

}

// Method to calculate the area
public double getArea() {

return length width;
}

// Method to calculate the perimeter
public double getPerimeter() {

return 2 (length + width);

}

public static void main(String[] args) {
// Create a Rectangle object

Rectangle rect = new Rectangle(5.0, 3.0);

// Print the area and perimeter
System.out.printin("Area: " + rect.getArea());
System.out.printIn("Perimeter: " + rect.getPerimeter());
}

}

5.Write a simple java program that reads data from one file and writes the data to another
file (5)

Here’s a simple Java program that reads data from one file and writes it to another file:
import java.io.;

public class FileCopy {

public static void main(String[] args) {

// Specify the source and destination file paths

String sourceFile = "input.txt";

String destinationFile = "output.txt";

try (

// Create file readers and writers

FileReader fr = new FileReader(sourceFile);
FileWriter fw = new FileWriter(destinationFile)

)

int character;

// Read characters from the source file and write them to the destination file
while ((character = fr.read()) !=-1) {

fw.write(character);

}

System.out.printin("File copied successfully.");

} catch (IOException e) {

System.out.printin("An error occurred: " + e.getMessage());

}

}

6. Discuss grid layout with example.

GridLayout is a layout manager in Java's AWT (Abstract Window Toolkit) and Swing that arranges
components in a rectangular grid. It divides the container into equal-sized cells and places components into
these cells. Each cell can hold only one component, and all cells are of equal size.

Key Features of GridLayout:
- Equal-Sized Cells: All cells in the grid are of equal size, which helps in creating a uniform layout.

- Row and Column Specification: You can specify the number of rows and columns when creating a
“GridLayout” instance.

- Component Placement: Components are placed in the grid from left to right and top to bottom.

Example of GridLayout

Here’s an example that demonstrates how to use "GridLayout™ in a Swing application to arrange buttons in a
grid:

import javax.swing.;

import java.awt.;

public class GridLayoutExample {

public static void main(String[] args) {

// Create a frame

JFrame frame = new JFrame("GridLayout Example");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Create a GridLayout with 3 rows and 2 columns

frame.setLayout(new GridlLayout(3, 2, 5, 5)); // (rows, columns, hgap, vgap)

// Add buttons to the frame

frame.add(new JButton("Button 1"));
frame.add(new JButton("Button 2"));
frame.add(new JButton("Button 3"));
frame.add(new JButton("Button 4"));
frame.add(new JButton("Button 5"));

frame.add(new JButton("Button 6"));

// Set frame size and make it visible
frame.setSize(300, 200);
frame.setVisible(true);

}

}

7. What is action event? Discuss (5)

An ActionEvent in Java is an event that is generated when a user interacts with a component that supports
action events, such as buttons, menu items, or text fields. It is a fundamental part of event handling in
Java's Abstract Window Toolkit (AWT) and Swing libraries.

Key Aspects of ActionEvent

1. Triggering Actions:

- ActionEvent is typically triggered by user actions such as clicking a button, selecting a menu item, or
pressing Enter in a text field.

- It allows you to define specific behavior in response to these actions.

2. Event Object:

- An “ActionEvent’ object contains information about the event,such as the source of the event (the
component that triggered it) and the command string (if applicable)-

- Common methods include "getSource()’, which returns the object that generated the event, and
‘getActionCommand()’, which returns the command string associated with the event.

3. ActionListener Interface:

- To handle "ActionEvent’, a class must implement the “ActionListener’ interface, which requires defining
the “actionPerformed(ActionEvent e)" method.

- The “actionPerformed™ method is invoked when an action event occurs.

4. Registering Listeners:

- Components that generate action events must have an "ActionListener’ registered with them. This is done
using the "addActionListener(ActionListener listener)” method.

5. Use Cases:

- Commonly used in GUI applications to respond to user inputs, such as form submissions, button clicks,
and menu selections.

Example of Handling ActionEvent

Here's a simple example demonstrating how to use "ActionEvent’ in a Swing application to respond to a
button click:

import javax.swing.;

import java.awt.event.;

public class ActionEventExample {

public static void main(String[] args) {

// Create a frame

JFrame frame = new JFrame("ActionEvent Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(300, 200);

frame.setLayout(null);

// Create a button

JButton button = new JButton("Click Me™);

button.setBounds(100, 80, 100, 30);

// Add action listener to the button
button.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent e) {

// Handle the action event
JOptionPane.showMessageDialog(frame, "Button Clicked!");
}

});

// Add button to the frame

frame.add(button);

// Set frame visibility

frame.setVisible(true);

}
}

8. How do you execute SQL statement in JDBC? (5)

To execute SQL statements in JDBC (Java Database Connectivity), you follow a sequence of steps involving
establishing a connection to a database, creating a "Statement” or "PreparedStatement’ object, executing
the SQL statement, and handling the results. Here’s a step-by-step guide:

Steps to Execute SQL Statements in JDBC

1. Load the JDBC Driver:

- Ensure that the JDBC driver for your database is available in the classpath.

- Load the driver class (this step might be automatic for modern JDBC drivers).

2. Establish a Connection:

- Use ‘DriverManager’ to establish a connection to the database using a connection URL, username, and
password.

3. Create a Statement Object:
- Use the connection object to create a "Statement’ or 'PreparedStatement’ object.

- ‘Statement’ is used for simple queries, while "PreparedStatement’ is used for parameterized queries and
can offer better performance and security.

4. Execute the SQL Statement:
- Use the “executeQuery” method for SELECT statements to retrieve data.

- Use the “executeUpdate’ method for INSERT, UPDATE, DELETE, or other DML statements to modify the
database.

5. Process the Results:
- For queries, process the ‘ResultSet™ object returned by “executeQuery".

- For updates, check the number of affected rows returned by “executeUpdate’.

6. Close the Resources:

- Close the "ResultSet’, "Statement’, and "Connection’ objects to free up database resources.

Example: Executing SQL Statements in JDBC

Here’s a simple example demonstrating how to execute a SQL SELECT statement and an INSERT statement
using JDBC:

“java

import java.sql.;

public class JdbcExample {

public static void main(String[] args) {

// Database URL, username, and password

String url = "jdbc:mysql://localhost:3306/mydatabase";

String username = "root";

String password = "password";

Connection connection = null;
Statement statement = null;

ResultSet resultSet = null;

try {

// Load the JDBC driver (optional for modern drivers)

Class.forName("com.mysql.cj.jdbc.Driver");

// Establish a connection

connection = DriverManager.getConnection(url, username, password);

// Create a statement object

statement = connection.createStatement();

// Execute a SELECT query
String selectQuery = "SELECT FROM employees";

resultSet = statement.executeQuery(selectQuery);

// Process the result set

while (resultSet.next()) {

int id = resultSet.getInt("id");

String name = resultSet.getString("name");

System.out.printIn("ID: " +id + ", Name: " + name);

}

// Execute an INSERT query
String insertQuery = "INSERT INTO employees (name) VALUES ('John Doe')";
int rowsAffected = statement.executeUpdate(insertQuery);

System.out.printin("Rows affected: " #+ rowsAffected);

} catch (SQLException | ClassNotFoundException e) {
e.printStackTrace();

}Hinally {

// Close resources

try {

if (resultSet = null) resultSet.close();

if (statement != null) statement.close();
if (connection != null) connection.close();
} catch (SQLException e) {
e.printStackTrace();

}

}

9. Write a Java program using servlet to display "Tribhuvan University". (5)

To create a Java servlet that displays "Tribhuvan University", follow these steps:

1. Servlet Code

Create a Java file named "DisplayServlet.java':

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet("/display")
public class DisplayServlet extends HttpServlet {

private static final long-serialVersionUID'=1L;

@Override

protected void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Set the content type

response.setContentType("text/html");

// Write the response
response.getWriter().printIn("<html><body>");
response.getWriter().printin("<h1>Tribhuvan University</h1>");
response.getWriter().printin("</body></html|>");

}

}

2. Web Deployment Descriptor (‘web.xml’)

In your web application's "WEB-INF" directory, create or update ‘web.xml':

Sl
<web-app xmins="http://xmlins.jcp.org/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlins.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

version="3.1">

<servlet>
<servlet-name>DisplayServlet</servlet-name>
<servlet-class>DisplayServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>DisplayServlet</servlet-name>
<url-pattern>/display</url-pattern>

</servlet-mapping>

</web-app>

11.Discuss property design patterns for Java Beans. (5)

Design Patterns for Properties

A property is a subset of a Bean’s state. The values assigned to the properties determine the
behavior and appearance of that component. A property is set through a setter method. A
property is obtained by a getter method. There are two types of properties: simple and
indexed.

Simple Properties

A simple property has a single value, where N is the name of the property and T is its type:
public T getN()

public void setN(T arg)

A read/write property has both of these methods to access its values. A read- only property
has only a get method. A write-only property has only a set method.

Boolean Properties:

A Boolean property has a value of true or false, where N is the name of the property:
public boolean isN();

public boolean getN();

public void setN(boolean value);

Either the first or second pattern can be used to retrieve the value of a Boolean property.
However, if a class has both of these methods, the first pattern is used.

Indexed Properties

An indexed property consists of multiple values, where N is the name of the property and
Tis its type:

public T getN(int index);

public void setN(int index, T value); public T[] getN();

public void setN(T values[]);

12.What is CORBA? How is it different from RMI? (2+3)

What is CORBA?

CORBA (Common Object Request Broker Architecture) is a framework developed by the Object
Management Group (OMG) that allows software components written in different languages and running on
different machines to communicate with each other. CORBA enables interoperability between
heterogeneous systems by defining a standard for object communication and providing a way to invoke
methods on objects in a distributed environment.

Key Features of CORBA:

1. Object Request Broker (ORB): The core component that handles communication between clients and
servers.

2. Interface Definition Language (IDL): A language-neutral specification used to define the interfaces that
objects expose.

3. Stubs and Skeletons: Generated code that helps in marshalling and unmarshalling data between clients
and servers.

4. Interoperability: Allows components from different languages and platforms to work together.

How is CORBA Different from RMI?

RMI (Remote Method Invocation) and CORBA both provide mechanisms for remote communication in
distributed systems, but they differ in several key aspects:

1. Language and Platform Support:

- CORBA: Language-agnostic and platform-independent. It uses IDL to define interfaces, which can be
implemented in various programming languages (e.g., Java, C++, Python).

- RMI: Primarily Java-specific. It allows Java objects to invoke methods on other Java objects located on
different JVMs.

2. Interface Definition:

- CORBA: Uses IDL (Interface Definition Language) to define interfaces, which are then mapped to specific
programming languages.

- RMI: Uses Java interfaces directly; remote interfaces extend “java.rmi.Remote’, and method signatures
must declare ‘throws RemoteException’.

3. Communication:

- CORBA: Utilizes IIOP (Internet Inter-ORB Protocol) for communication between ORBs. It can work over
various transport protocols.

- RMI: Uses Java’s RMI protocol for communication, which is built on top of Java’s serialization mechanism
and typically works over TCP/IP.

4. Flexibility and Complexity:

- CORBA: More complex due to its language-neutral approach and extensive features like CORBA Services
(e.g., naming service, transaction service).

- RMI: More straightforward for Java applications but limited to Java environments.

13.Write short notes on: (2.5+2.5)
a) Multithreading
b) JSP

a) Multithreading

Multithreading is a programming concept that allows multiple threads to run concurrently within a single
process. A thread is the smallest unit of execution in a program, and multithreading enables efficient
utilization of CPU resources by performing multiple operations simultaneously.

Key Points:

- Concurrency: Multithreading enables concurrent execution, improving application performance and
responsiveness.

- Threads: Threads share the same memory space but have their own stack, program counter, and local
variables.

- Java Support: Java provides built-in support for multithreading through the "Thread" class and the
‘Runnable’ interface.

- Synchronization: To avoid issues like race conditions, Java uses synchronization mechanisms such as
synchronized methods and blocks to control access to shared resources.

Example:

“java

public class MyThread extends Thread {
public void run() {

System.out.printin("Thread is running.");

}

public static void main(String[] args) {
MyThread t1 = new MyThread();
MyThread t2 = new MyThread();
tl.start(); // Starts thread t1
t2.start(); // Starts thread t2

}

}

b) JSP (JavaServer Pages)

JSP (JavaServer Pages) is a technology used to create dynamic web content in Java. It allows embedding
Java code within HTML pages, enabling the generation of dynamic content based on user interactions or
data from a server.

Key Points:

- Embedding Java: JSP files combine HTML with Java code to create dynamic web pages. Java code is
embedded using special tags.

- Servlet Integration: JSPs are compiled into servlets by the server. They use standard JSP tags and
expressions to handle logic and generate HTML.

- Directives and Tags: JSP includes directives (e.g., <% @ page language="java" %>") and custom tags (e.g.,
<jsp:useBean>" for bean access) to manage content and functionality.

- Separation of Concerns: JSP promotes the separation of presentation from business logic. It is often used
with JavaBeans or custom tags to manage business logic separately.

Example:

“jsp

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<html>

<head>

<title>JSP Example</title>

</head>

<body>

<h1>Hello, World!</h1>

<%

String name = "User";
out.printin("Welcome, " + name +"!");
%>

</body>

</html>

Summary:

- Multithreading: Allows concurrent execution of threads, improving performance and responsiveness in
applications.

- JSP: A Java technology for creating dynamic web pages by embedding Java code within HTML, compiled
into servlets by the server.

14. Design a GUI form using swing with a text field, a text label for displaying the input
message “Input any String”, and three buttons with caption CheckPalindrome, Reverse,
FindVowels. Write a complete program for above scenario and for checking palindrome
in first button, reverse it after clicking second button and extract the vowels from it after

clicking third button. (10)

Here is a complete Java Swing program that implements a GUI form with a text field, a label, and three
buttons. Each button performs a specific action: checking if the input string is a palindrome, reversing the
input string, and finding the vowels in the input string.

Complete Java Swing Program

“java
import javax.swing.;
import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class StringManipulationGUI {

public static void main(String[] args) {

// Create the frame

JFrame frame = new JFrame("String Manipulation");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(400, 200);

frame.setLayout(null);

// Create the label

JLabel label = new JLabel("Input any String:");
label.setBounds(10, 10, 150, 25);
frame.add(label);

// Create the text field
JTextField textField = new JTextField();
textField.setBounds(160, 10, 200, 25);

frame.add(textField);

// Create the "Check Palindrome" button
JButton checkPalindromeButton = new JButton("CheckPalindrome");

checkPalindromeButton.setBounds(10, 50, 150, 30);

frame.add(checkPalindromeButton);

// Create the "Reverse" button
JButton reverseButton = new JButton("Reverse");
reverseButton.setBounds(170, 50, 100, 30);

frame.add(reverseButton);

// Create the "Find Vowels" button
JButton findVowelsButton = new JButton("FindVowels");
findVowelsButton.setBounds(280, 50, 120, 30);

frame.add(findVowelsButton);

// Create a label to display the result
JLabel resultLabel = new JLabel();
resultLabel.setBounds(10, 90, 350, 25);

frame.add(resultLabel);

// Action listener for the "Check Palindrome" button
checkPalindromeButton.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent e) {

String text = textField.getText();

boolean isPalindrome = text.equals(new StringBuilder(text).reverse().toString());
resultLabel.setText("Palindrome: " + isPalindrome);

}

1

// Action listener for the "Reverse" button
reverseButton.addActionListener(new ActionListener() {
@Override

public void actionPerformed(ActionEvent e) {

String text = textField.getText();

String reversed = new StringBuilder(text).reverse().toString();

resultLabel.setText("Reversed: " + reversed);

}
1;

// Action listener for the "Find Vowels" button
findVowelsButton.addActionListener(new ActionListener() {
@Override

public void actionPerformed(ActionEvent e) {

String text = textField.getText();

StringBuilder vowels = new StringBuilder();

for (char c : text.toCharArray()) {

if ("AEIOUaeiou".indexOf(c) !=-1) {
vowels.append(c).append(" ");

}

}

resultLabel.setText("Vowels: " + vowels.toString().trim());
}

});

// Set frame visibility
frame.setVisible(true);
}

}

15. Why do we need to handle the exception? Distinguish error and exception, Write a
program to demonstrate your own exception class. [1+2+7]

Why Do We Need to Handle Exceptions?

Exception handling is crucial in programming to manage errors gracefully, maintain application stability, and
provide a better user experience. Here are the main reasons:

1. Error Management: Handle errors that occur during program execution without crashing the application.

2. Graceful Degradation: Allow the program to continue running or shut down gracefully, providing useful
feedback to the user.

3. Maintainability: Helps in debugging and understanding issues by providing meaningful error messages
and logs.

4. Control Flow: Allows developers to define how the application should respond to different error
conditions.

Distinguishing Error and Exception

1. Error:
- Definition: Represents serious issues that are typically beyond the control of the application.
- Examples: "OutOfMemoryError’, "StackOverflowError’.

- Handling: Not usually handled by applications as they indicate severe problems that the application
cannot recover from.

2. Exception:

- Definition: Represents conditions that a program can handle or recover from. Exceptions are used to
indicate that something went wrong during execution.

- Examples: "IOException’, "SQLException’, "ArithmeticException’.

- Handling: Exceptions should be caught and handled using try-catch blocks to ensure the application can
deal with errors and continue running.

Java Program to Demonstrate a Custom Exception

Here’s a complete Java program that defines and uses a custom exception class:

Custom Exception Class

“java

// Define the custom exception class

class InvalidAgeException extends Exception {
public InvalidAgeException(String message) {
super(message);

}

}

Main Program

“java

public class CustomExceptionDemo {

// Method that throws the custom exception

public static void validateAge(int age) throws InvalidAgeException {
if (age <0 || age > 150) {

throw new InvalidAgeException("Invalid age: " + age);

}

System.out.printin("Valid age: " + age);

}

public static void main(String[] args) {

try {

validateAge(25); // Valid age

validateAge(-5); // This will cause an exception

} catch (InvalidAgeException e) {
System.out.printIn("Caught exception: " + e.getMessage());
}

}

}

16. Describe the process to deploy the servlet. Write a program to a JSP web form to.take

input of a student and submit it to.second JSP file which-may simply print the valuesof

form submission. [4+6]

Process to Deploy a Servlet

Deploying a servlet involves several steps to ensure it is properly set up and accessible within a web
application. Here’s a general outline of the process:

1. Write the Servlet Code:

- Create a Java class that extends "HttpServlet” and override the "doGet()’ or "doPost()" methods to handle
HTTP requests.

2. Compile the Servlet:

- Compile the servlet class using the Java compiler (‘javac’). Ensure the servlet APl is included in the
classpath.

3. Package the Web Application:
- Place the compiled servlet class in the "WEB-INF/classes” directory of your web application.

- If using a build tool like Maven or Gradle, configure it to package your web application into a “.war’ (Web
Application Archive) file.

4. Configure the Web Application:

- Define the servlet in the ‘'web.xml" deployment descriptor located in "WEB-INF" directory or use
annotations in the servlet class for configuration.

5. Deploy the Application:
- Deploy the “.war" file or the web application directory to a servlet container like Apache Tomcat or Jetty.

- Copy the ".war" file to the ‘'webapps” directory of Tomcat or use the deployment interface of the servlet
container.

6. Start the Servlet Container:

- Start or restart the servlet container to deploy the application and make it accessible.

7. Access the Servlet:

- Open a web browser.and navigate to the servlet URL (e.g., "http://localhost:8080/your-webapp/servlet-
name’) to test the servlet.

JSP Web Form and Handling Example

Here's a complete example with two JSP files:

1. First JSP File (input.jsp): A form to take student input.

2. Second JSP File (display.jsp): Displays the submitted values.

‘input.jsp’

“isp
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<html>

<head>

<title>Student Input Form</title>

</head>

<body>

<h1>Student Information Form</h1>

<form action="display.jsp" method="post">

<label for="name">Name:</label>

<input type="text" id="name" name="name" required>

<label for="age">Age:</label>

<input type="number" id="age" name="age" required>

<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

<input type="submit" value="Submit''>

</form>

</body>

</html>

“display.jsp’

“isp
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<html|>

<head>

<title>Student Information</title>

</head>

<body>

<h1>Submitted Student Information</h1>

<p>Name: <%= request.getParameter("name") %></p>
<p>Age: <%= request.getParameter("age") %></p>
<p>Email: <%= request.getParameter("email") %></p>

</body>

</html>

17. An array is called balanced if it's even numbered elements (a[0], a[2], etc.) are even and
its odd numbered elements (a[1], a[3],etc.) are Odd. Write a function named is Balanced
that accepts an array of integers and returns 1 if the array is balanced otherwise it

returns 0. [5]

To determine if an array is balanced, you need to check if all even-indexed elements are even and all odd-
indexed elements are odd. Here's a Java function named ‘isBalanced’ that performs this check:

Java Function

“java

public class ArrayBalancer {

// Function to check if the array is balanced
public static int isBalanced(int[] array) {
// Iterate through the array

for (inti=0; i< array.length; i++) {

// Check even-indexed elements

if (i % 2 == 0) {

if (array[i] % 2 '=0) {

// Even index but element is not even
return O;

}

}else {

// Check odd-indexed elements

if (array[i] % 2 ==0) {

// Odd index but element is not odd

return O;

}
}

}
// Array is balanced

return 1;

}

public static void main(String[] args) {
// Test cases
int[] arrayl = {2, 3, 4, 5}; // Balanced array

int[] array2 = {2, 3, 4, 6}; // Not balanced array

// Check if arrays are balanced

System.out.printin("Array 1 is balanced: " + (isBalanced(arrayl) == 1 ? "Yes" : "No"));
System.out.printin("Array 2 is balanced: " + (isBalanced(array2) == 1 ? "Yes" : "No"));
}
}

18. Explain the significance of cookies and sessions with suitable example? [5]

Cookies and sessions are fundamental concepts in web development used for maintaining state and storing
user data between requests. Here’s an explanation of their significance with suitable examples:

Cookies

Significance:

- State Persistence: Cookies are used to store small amounts of data on the client's browser. This data
persists across multiple requests and sessions, making it useful for remembering user preferences or login
information.

- Client-Side Storage: Data stored in cookies is maintained on the client's device, reducing the server's load.

Example:

A common use of cookies is to remember a user's login status or preferences.

“java

// Java Servlet example to set a cookie
import javax.servlet.;

import javax.servlet.http.;

import java.io.lOException;

public class CookieExample extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServietResponse response)
throws ServletException, IOException {

// Create a cookie

Cookie userCookie = new Cookie("username", "JohnDoe");

userCookie.setMaxAge(6060); // Cookie expires.in 1 hour

// Add cookie to the response

response.addCookie(userCookie);

// Respond to the client
response.setContentType("text/html");
response.getWriter().printIn("Cookie has been set!");
}

}

Significance:

- Server-Side Storage: Sessions are used to store data on the server side. Each user is assigned a unique
session ID, and data associated with that ID is stored on the server.

- State Management: Sessions are used to maintain state and user-specific information across multiple
requests within the same user session, such as authentication status or shopping cart contents.

- Security: Since session data is stored on the server, it is more secure compared to cookies, which are
stored on the client-side.

Example:

A typical use of sessions is to manage user login state.

“java

// Java Servlet example to use session
import javax.servlet.;

import javax.servlet.http.;

import java.io.lOException;

public class SessionExample extends HttpServlet {
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Retrieve the session,-create if not exists

HttpSession session = request.getSession();

// Store user information in the session
String username = request.getParameter("username");

session.setAttribute("username", username);

// Respond to the client

response.setContentType("text/html");
response.getWriter().printin("Session data stored for user: " + username);
}

}

Summary

- Cookies:
- Stored on the client-side.
- Used for storing small amounts of data like user preferences or login states.

- Data is sent with every request to the server.

- Sessions:
- Stored on the server-side.
- Used for maintaining user-specific data and state across multiple requests.

- More secure as sensitive data is not exposed to the client.

Both cookies and sessions play a crucial role in managing user data and maintaining state in web
applications. Cookies are useful for client-side persistence, while sessions provide secure server-side
storage.

19. Define the chain of constructor. What is.the purpose of private constructor? [5]

Chain of Constructors

Definition:

The chain of constructors refers to the process where one constructor in a class calls another constructor
within the same class. This allows for constructor reuse and the initialization of default values or common
setup code.

Purpose:
- Constructor Overloading: To provide multiple ways to initialize an object with different sets of parameters.

- Code Reuse: To avoid duplicating initialization code by centralizing it in one constructor and calling it from
other constructors.

- Flexible Initialization: To offer different initialization options based on the provided parameters.

How It Works:

- Constructor Calling Another Constructor: In Java, you use “this()" to call another constructor in the same
class. This must be the first statement in the calling constructor.

Example:

public class Rectangle {
private int width;

private int height;

// Constructor with no parameters
public Rectangle() {

this(0, 0); // Call the parameterized constructor

}

// Constructor with two parameters
public Rectangle(int width, int height) {
this.width = width;

this.height = height;

}

public int getArea() {

return width height;
}

public static void main(String[] args) {
Rectangle rectl = new Rectangle(); // Calls the no-arg constructor

Rectangle rect2 = new Rectangle(5, 10); // Calls the parameterized constructor

System.out.printin("Area of rectl: " + rectl.getArea()); // Output: O
System.out.printin("Area of rect2: " + rect2.getArea()); // Output: 50
}

}

In this example:

- The no-argument constructor "Rectangle() calls the parameterized constructor ‘Rectangle(int width, int
height)" using "this(0, 0)". This allows both constructors to share the initialization logic.

Purpose of Private Constructor

Definition:

A private constructor is a constructor that cannot be accessed from outside the class. It is declared with the
“private’ access modifier.

Purpose:

1. Singleton Pattern: To implement the Singleton design pattern, ensuring that only one instance of a class
is created. By making the constructor private, the class itself controls the creation of its single instance.

2. Utility Classes: To prevent instantiation of utility classes that contain static methods only. These classes
are not meant to be instantiated, so their constructors are made private.

3. Controlled Instantiation: To restrict object creation and control it through other static methods or factory
methods within the class.

Example (Singleton Pattern):

“java
public class Singleton {

private static Singleton instance;

// Private constructor to prevent instantiation

private Singleton() {}

// Public method to provide access to the single instance
public static Singleton getinstance() {

if (instance == null) {

instance = new Singleton();

}

return instance;

}

}

public class Main {

public static void main(String[] args) {

// Accessing the single instance of Singleton
Singleton singleton = Singleton.getlnstance();
System.out.printin("Singleton instance: " + singleton);
}

}

In this example:

- The ‘Singleton’ class has a private.constructor to prevent external.instantiation.

- The “getinstance()" method provides a controlled way to access the single instance of the class.

Summary

- Chain of Constructors:
- Refers to calling one constructor from another within the same class using “this()".

- Provides constructor overloading, code reuse, and flexible initialization.

- Private Constructor:
- Prevents external instantiation of a class.

- Used in Singleton patterns, utility classes, and controlled instantiation scenarios.

20. Describe the process to run the RMI application. [5]

Running a Remote Method Invocation (RMI) application involves several steps, including setting up the RMI
server, defining the remote interface, implementing the remote object, and running the RMI registry. Here’s
a detailed process to run an RMI application:

Summary

1. Define Remote Interface: Create an interface extending ‘Remote’.

2. Implement Remote Interface: Implement the interface and extend "UnicastRemoteObject’.
3. Create RMI Server: Set up and bind the remote object to the RMI registry.

4. Create RMI Client: Lookup the remote object and invoke methods.

5. Compile and Run: Compile the classes, start the RMI registry, and run the server and client.

Following these steps ensures that the RMI application is properly set up and can communicate between
the server and client.

21. How prepared statements are different with statement? List the types of JDBC
driver.[2+3]

Differences Between ‘PreparedStatement’ and “Statement’

1. SQL Injection Prevention:
- ‘Statement’: Vulnerable to SQL injection attacks if user input is included directly in the SQL query.

- "PreparedStatement’: Provides built-in protection against SQL injection by using placeholders (parameters)
in the SQL query.

2. Performance:

- ‘Statement’: The SQL query is parsed, compiled, and executed each time it is run. This can be inefficient if
the same query is executed multiple times with different parameters.

- "PreparedStatement’: The SQL query is precompiled and optimized once. Subsequent executions with
different parameters are faster because the query plan is reused.

3. Parameter Handling:

- "Statement’: Does not support parameters. You need to manually concatenate query strings, which can be
error-prone and unsafe.

- "PreparedStatement’: Supports parameterized queries, allowing you to set values for placeholders using
setter methods (‘setiInt()’, “setString()’, etc.).

4. Readability and Maintainability:

- ‘Statement’: Requires manual concatenation of parameters into the SQL string, which can lead to messy
code and harder maintenance.

- "PreparedStatement’: Uses placeholders and setter methods, making the code cleaner and easier to
maintain.

5. Execution:
- ‘Statement’: Typically used for simple queries and updates where parameters are not required.

- "PreparedStatement’: Designed for executing parameterized queries, especially beneficial when the same
guery needs to be executed multiple times with different values.

Example of ‘Statement ' 'vs ‘PreparedStatement™:

Using ‘Statement’:

“java

String query = "SELECT FROM users WHERE username ="' + username + """;
Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(query);

Using "PreparedStatement’:

“java

String query = "SELECT FROM users WHERE username = ?";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, username);

ResultSet rs = pstmt.executeQuery();

Types of JDBC Drivers

1. JDBC-ODBC Bridge Driver (Type 1):
- Description: Converts JDBC calls into ODBC calls and uses ODBC drivers to interact with the database.
- Advantages: Simple to use with existing ODBC drivers.

- Disadvantages: Performance overhead due to additional layer, and it is no longer supported in recent
versions of Java.

2. Native-API Driver (Type 2):

- Description: Converts JDBC calls into database-specific native API calls. Requires native library installation
on the client machine.

- Advantages: Better performance than Type 1, as it directly uses the database's native protocol.

- Disadvantages: Requires database-specific libraries, making it less portable.

3. Network Protocol Driver (Type 3):

- Description: Converts JDBC calls into-a database-independent network protocol, which is then converted
into database-specific calls by a server-side. component.

- Advantages: Can be used with multiple databases by configuring the middle-tier server.

- Disadvantages: Requires a middle-tier server and additional configuration.

4. Pure Java Driver (Type 4):

- Description: Converts JDBC calls directly into the database-specific protocol using Java, without needing
native libraries.

- Advantages: Best performance, platform-independent, and no need for native libraries.

- Disadvantages: Requires knowledge of the database's network protocol.

Summary

- "‘PreparedStatement’ vs “Statement:

- "PreparedStatement’ is more secure, efficient, and easier to maintain due to precompilation and
parameterization.

- JDBC Driver Types:

- Type 1: JDBC-ODBC Bridge (now deprecated).
- Type 2: Native-API Driver.

- Type 3: Network Protocol Driver.

- Type 4: Pure Java Driver.

Each JDBC driver type has its own advantages and is suitable for different scenarios based on the
application's requirements and environment.

22. Write a Java program to find the sum of two numbers using swing components. Use text
fields for input and output. Your program displays output if you press any key in
keyboard. Use key adapter to handle events.

To create a Java Swing application that finds the sum of two numbers using text fields for input and output,
and displays the result when any key is pressed, you can follow these steps. This example will use a
"KeyAdapter™ to handle key events.

Here's a complete Java program demonstrating this:

Java Program

“java

import javax.swing.;

import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

public class SumCalculator extends JFrame {
private JTextField inputFieldl;
private JTextField inputField2;

private JTextField resultField;

public SumCalculator() {

// Set up the frame

setTitle("Sum Calculator");

setSize(300, 150);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setLayout(null);

// Initialize text fields
inputField1 = new JTextField();
inputField1.setBounds(30, 30, 80, 25);

add(inputFieldl);

inputField2 = new JTextField();
inputField2.setBounds(120, 30, 80, 25);

add(inputField2);

resultField = new JTextField();
resultField.setBounds(30, 70, 170, 25);
resultField.setEditable(false);

add(resultField);

// Add key listener to the frame

KeyListener keyListener = new KeyAdapter() {
@Override

public void keyPressed(KeyEvent e) {
calculateSum();

}

y

addKeyListener(keyListener);
inputField1.addKeyListener(keyListener);

inputField2.addKeyListener(keyListener);

// Make frame visible
setVisible(true);

}

private void calculateSum() {

try {

// Get the values from text fields
String text1 = inputFieldl.getText();

String text2 = inputField2.getText();

// Parse the numbers
int num1 = Integer.parselnt(textl.isEmpty() ? "0" : textl);

int num2 = Integer.parselnt(text2.isEmpty() ? "0" : text2);

// Calculate the sum

int sum = num1 + num2;

// Display the result
resultField.setText(String.valueOf(sum));
} catch (NumberFormatException e) {

// Handle invalid input
resultField.setText("Invalid input");

}

}

public static void main(String[] args) {
// Create the GUI in the Event Dispatch Thread

SwingUtilities.invokelLater(() -> new SumCalculator());

}
}

Explanation

1. Setup Frame:

- Title: Sets the title of the JFrame.

- Size: Defines the size of the window.

- Layout: Uses "null’” layout to manually set component bounds.

- Close Operation: Closes the application when the window is closed.

2. Initialize Components:
- ‘JTextField': For input fields and result display.

- Bounds: Set the size and position of each component.

3. Add Key Listener:
- KeyAdapter: Custom implementation of ‘KeyAdapter" to listen for key events.

- "keyPressed” Method:.Calls “calculateSum()" method when any key is pressed.

4. Calculate Sum:

- Get Values: Retrieve text from input fields.

- Parse Integers: Convert text to integers. Default to "0 if text is empty.
- Compute Sum: Add the two numbers.

- Display Result: Update the result field with the sum or an error message if input is invalid.

5. Main Method:

- SwingUtilities.invokelLater(): Ensures that the GUI creation runs on the Event Dispatch Thread for thread
safety.

Summary

This program creates a simple Swing-based GUIl where the user can input two numbers. When any key is
pressed, it calculates and displays the sum of the two numbers in a non-editable text field. The use of
‘KeyAdapter™ allows handling key events efficiently.

23. Define servlet. Discuss life cycle of servlet. Differentiate servlet with JSP.

A Servlet is a Java programming language class that is used to extend the capabilities of servers. It is
commonly used to handle requests and responses in web applications. Servlets are part of the Java EE
(Enterprise Edition) specification and are managed by a web container (or servlet container) such as
Apache Tomcat or Jetty. They can process requests, generate dynamic web content, and interact with
databases or other services.

Life Cycle of a Servlet

The life cycle of a servlet consists of several phases managed by the servlet container:

1. Loading and Instantiation:

- The servlet container loads the servlet class into memory and creates an instance of the servlet. This
occurs when the servlet is first requested-or-when the container starts up (if the serylet is configured to
load on startup).

2. Initialization:

- The servlet container calls the ‘init()" method of the servlet. This method is used for one-time initialization,
such as setting up resources or configurations. The "init()° method is called once for the servlet instance.

- Signature: “public void init(ServletConfig config) throws ServletException

3. Request Handling:

- After initialization, the servlet can handle multiple requests. For each request, the servlet container calls
the “service()" method. This method processes the request and generates a response. It receives
"HttpServietRequest™ and "HttpServletResponse™ objects.

- Signature: “public void service(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException’

4. Destruction:

- When the servlet is no longer needed or the server is shutting down, the servlet container calls the
“destroy()” method. This method is used to release resources and perform cleanup operations. The
‘destroy()" method is called once before the servlet is removed from memory.

- Signature: “public void destroy()"

Differentiation Between Servlet and JSP

1. Definition:

- Servlet: A Java class used to handle requests and generate responses in a web application. It is typically
used for complex logic and processing.

- JSP (JavaServer Pages): A technology used to create dynamic web pages with HTML, Java code, and JSP
tags. It is primarily used for presentation and layout, allowing Java code to be embedded in HTML.

2. Usage:

- Servlet: More suitable for handling complex business logic, interacting with databases, and managing
application state.

- JSP: Designed to simplify the creation of web content and presentation. It is often used for generating
HTML dynamically and is generally more user-friendly for designing web pages.

3. Compilation:

- Servlet: Compiled into Java bytecode and executed on the server. Servlets are Java classes and require
explicit code to generate HTML output.

- JSP: Compiled into a servlet by the JSP engine. The JSP file is transformed into a servlet and then compiled,
allowing HTML and Java code to coexist.

4. Code Separation:
- Servlet: Java code and HTML are mixed within the servlet class. This can make the code harder to maintain.

- JSP: Separates HTML content and Java code, promoting a clearer separation between presentation and
logic. JSP uses JSP tags and expressions for embedding Java code.

5. Development:
- Servlet: Typically involves more boilerplate code and manual handling of response generation.

- JSP: Offers a more concise syntax for mixing Java code with HTML, making it easier to develop and
maintain web pages.

Simple Example of Servlet and JSP

Servlet Example:

“java

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class SimpleServlet extends HttpServlet {

protected void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
response.getWriter().printIn("<html><body>");
response.getWriter().printin("<h1>Hello from Servlet!</h1>");

response.getWriter().printin("</body></htm[>");

JSP Example:

“isp
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<html|>

<head>

<title>Simple JSP</title>

</head>

<body>

<h1>Hello from JSP!</h1>

</body>

</html>

Summary

- Servlet: Java class for request handling and response generation, used for complex logic and server-side
processing.

- JSP: Technology for creating dynamic web pages with a combination of HTML and Java code, mainly used
for presentation.

The servlet life cycle involves loading, initializing, handling requests, and destruction phases, managed by
the servlet container. While servlets are suited for handling logic, JSPs simplify web page creation and
layout.

24. Discuss MVC design pattern with example.

The MVC (Model-View-Controller) design pattern is a software architectural pattern used for implementing
user interfaces by separating an application into three interconnected components. This separation helps
manage complexity and makes the application easier to maintain and scale.

Components of MVC

1. Model:

- Definition: Represents the data and the business logic of the application. It directly manages the data,
logic, and rules of the application.

- Responsibilities:

- Retrieve data from the database or other sources.
- Update data.

- Notify the view of changes to the data.

- Example: A class representing a database entity, such as “User’, with methods to interact with the
database.

2. View:

- Definition: Represents the presentation layer. It displays the data from the model to the user and sends
user input to the controller.

- Responsibilities:

- Render the data provided by the model.

- Display the data in a user-friendly format.

- Provide user interface elements like forms and buttons.

- Example: A JSP page or an HTML template that displays user information.

3. Controller:

- Definition: Acts as an intermediary between the model and the view. It processes user inputs, interacts
with the model, and updates the view.

- Responsibilities:

- Handle user input and update the model based on that input.

- Update the view to reflect changes in the model.

- Decide which view to.display basedon user actions and the state of the model.

- Example: A servlet or-a controller.class that processes form'submissions and updates the model.

How MVC Works

1. User Interaction: The user interacts with the view (e.g., clicks a button or submits a form).

2. Controller Handling: The controller receives the input from the view and processes it (e.g., updates the
model or performs some logic).

3. Model Update: The model is updated based on the controller's actions.

4. View Update: The view is updated to reflect changes in the model.

Example of MVC in Java with a Simple Application

Let's create a simple example of a web application that uses MVC to display and update user information.

1. Model: User.java

“java
public class User {
private String name;

private int age;

public User(String name, int age) {
this.name = name;
this.age = age;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

}

2. View: user.jsp

“sp
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<htmlI>

<head>

<title>User Information</title>

</head>

<body>

<h2>User Information</h2>

<form action="updateUser" method="post">

Name: <input type="text" name="name" value="${user.name}">

Age: <input type="text" name="age" value="${user.age}">

<input type="submit" value="Update">

</form>

<p>Name: S{user.name}</p>

<p>Age: S{user.age}</p>

</body>

</html>

3. Controller: UserController.java

“java

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import java.io.lOException;

@WebServlet("/user")

public class UserController extends HttpServlet {

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

HttpSession session = request.getSession();

User user = (User) session.getAttribute("user");

if (user == null) {
user = new User("John Doe", 25); // Default user

session.setAttribute("user", user);

}

request.setAttribute("user", user);

request.getRequestDispatcher("/user.jsp").forward(request, response);

}

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

String name = request.getParameter("name");

int age = Integer.parselnt(request.getParameter("age"));

HttpSession session = request.getSession();

User user = (User) session.getAttribute("user");

if (user == null) {

user = new User(name, age);
session.setAttribute("user", user);
}else {

user.setName(name);
user.setAge(age);

}

request.setAttribute("user", user);
request.getRequestDispatcher("/user.jsp").forward(request, response);
}

}

Summary

- Model: Manages data and business logic.
- View: Displays data to the user and provides Ul elements.

- Controller: Handles user input, updates the model, and changes the view.

The MVC pattern promotes separation of concerns, making the application easier to maintain, test, and
scale by clearly defining roles for each component.

25. What are the benefits of using JDBC? What is prepared statement?

Benefits of Using JDBC

JDBC (Java Database Connectivity) is a Java API that provides a standard interface for connecting to
relational databases from Java applications. Here are the key benefits of using JDBC:

1. Database Independence:

- Description: JDBC provides a uniform interface for different databases. By using JDBC, you can switch
between different databases with minimal changes to your code.

- Benefit: Helps in developing applications that are portable and can work with multiple database systems.

2. Standard API:

- Description: JDBC defines a standard set of interfaces and classes for database access, including handling
SQL queries, updates, and results.

- Benefit: Provides a consistent way to interact with databases, making it easier for developers to work with
different databases using the same API.

3. Support for Multiple Database Operations:

- Description: JDBC supports various database operations, including executing SQL queries, updates, and
managing transactions.

- Benefit: Allows comprehensive interaction with databases, including CRUD (Create, Read, Update, Delete)
operations.

4. Integration with Java Applications:

- Description: JDBC integrates seamlessly with Java applications, enabling Java programs to interact with
databases directly.

- Benefit: Facilitates database access within Java applications, allowing for dynamic data manipulation and
retrieval.

5. Transaction Management:
- Description: JDBC supports transaction management, including commit and rollback operations.

- Benefit: Ensures data integrity-and consistency by managing transactions and handling errors gracefully.

6. Support for Batch Processing:

- Description: JDBC allows executing multiple SQL statements in a batch, reducing network round-trips to
the database.

- Benefit: Improves performance and efficiency when dealing with large amounts of data.

Prepared Statement

A PreparedStatement is a special type of JDBC statement used to execute precompiled SQL queries with
parameters. It extends the "Statement’ interface and provides several advantages over regular “Statement’
objects.

Key Features of PreparedStatement:

1. Parameterization:

- Description: Prepared statements use placeholders (*?°) in the SQL query, which are later replaced with
actual values using setter methods.

- Benefit: Prevents SQL injection attacks by separating the SQL code from the data, and ensures that user
input is treated safely.

2. Precompilation:
- Description: The SQL query is precompiled and optimized when the "PreparedStatement” object is created.

- Benefit: Improves performance by reusing the precompiled query plan for multiple executions, reducing
the overhead of parsing and compiling the SQL statement.

3. Efficient Execution:

- Description: Prepared statements allow executing the same query with different parameters multiple
times.

- Benefit: Reduces network traffic and processing time compared to executing individual statements.

4. Improved Readability:
- Description: The use of placeholders and setter methods makes the code cleaner and easier to read.

- Benefit: Enhances code maintainability and reduces errors related to string concatenation.

5. Automatic Handling of SQL Data Types:
- Description: Prepared statements automatically handle data types and format conversions.

- Benefit: Simplifies the code and reduces the chances of errors due to incorrect data types.

Example of PreparedStatement:

Using ‘Statement’:

“java

String query = "SELECT FROM users WHERE username ="' + username + """;
Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(query);

Using "PreparedStatement’:

“java

String query = "SELECT FROM users WHERE username = ?";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, username);

ResultSet rs = pstmt.executeQuery();

In the ‘PreparedStatement” example:
-The *?" placeholder is used in the query.

- The “setString()” method is used to safely insert the value of “username’ into the query.

Summary

- Benefits of JDBC: Provides database independence, a standard API, supports multiple operations,
integrates with Java applications, manages transactions, and supports batch processing.

- PreparedStatement: A type of statement in JDBC that supports parameterized queries, precompilation,
efficient execution, improved readability, and automatic handling of SQL data types.

26. Define Java Bean. How is it different from other Java programs? What is design pattern?

Java Bean

A Java Bean is a reusable software component that follows certain conventions in its design. It is a special
kind of Java class that adheres to specific rules which allow it to be manipulated in visual development
environments and accessed through introspection.

Characteristics of Java Beans:

1. Serializable:

- A Java Bean must implement the “Serializable’ interface, which allows its state to be saved and restored.

2. No-Arg Constructor:

- A Java Bean must have a public no-argument constructor, which allows for easy creation and initialization.

3. Properties:

- Java Beans use getter and setter methods to expose their properties. For example, for a property ‘name’,
there should be “‘getName()" and ‘setName(String name)” methods.

4. Encapsulation:

- Properties are accessed through methods, maintaining encapsulation. Fields are usually private, and
access is provided via public getter and setter methods.

5. Events (Optional):

- Java Beans can also handle events, allowing them to be used in event-driven environments.

Example of a Java Bean:

““java

import java.io.Serializable;

public class Person implements Serializable {
private String name;

private int age;

// No-argument constructor

public Person() {
}

// Getter for name
public String getName() {

return name;

}

// Setter for name
public void setName(String name) {

this.name = name;

}

// Getter for age
public int getAge() {
return age;

}

// Setter for age

public void setAge(int age) {
this.age = age;

}

}

Difference from OtherJava Programs

1. Standard Conventions:

- Java Beans follow a specific set of conventions (e.g., naming conventions for getters and setters, having a
no-arg constructor) which makes them more predictable and compatible with various tools and
frameworks.

2. Reusable Components:

- Java Beans are designed to be reusable and can be easily manipulated in visual development
environments or frameworks. Other Java programs may not adhere to these conventions and might not be
as easily reusable or introspectable.

3. Serialization:

- Java Beans are required to be serializable, allowing their state to be persisted and restored. While other
Java classes can also be serializable, it is a fundamental requirement for Java Beans.

4. Encapsulation through Methods:

- Java Beans use getter and setter methods for encapsulating properties. While other Java classes may also
use methods for encapsulation, Java Beans strictly follow this pattern to ensure compatibility with various
tools.

Design Pattern

A Design Pattern is a general, reusable solution to a common problem that occurs within a given context in
software design. It provides a template for how to solve a problem in a way that is both effective and
flexible.

Key Aspects of Design Patterns:

1. Problem-Solution Template:

- Design patterns offer a template for solving problems, which can be applied in various situations.

2. Best Practices:

- They represent best practices and solutions that have been proven effective over time.

3. Reusability:

- Patterns are designed to be reused across different projects, improving the consistency and quality of
software design.

4. Types of Patterns:

- Creational Patterns: Deal with object creation mechanisms, e.g., Singleton, Factory Method, Abstract
Factory.

- Structural Patterns: Focus on object composition and the organization of classes, e.g., Adapter, Composite,
Decorator.

- Behavioral Patterns: Concerned with object interaction and responsibility, e.g., Observer, Strategy,
Command.

Example of a Design Pattern: Singleton

The Singleton pattern ensures that a class has only one instance and provides a global point of access to
that instance.

Singleton Example in Java:

“java
public class Singleton {

private static Singleton instance;

// Private constructor to prevent instantiation

private Singleton() {
}

// Public method to provide access to the instance
public static synchronized Singleton getinstance() {
if (instance == null) {

instance = new Singleton();

}

return instance;

}

Summary

- Java Bean: A reusable Java component that follows conventions such as having a no-arg constructor,
implementing ‘Serializable’, and using getter/setter methods.

- Difference from Other Java Programs: Java Beans adhere to specific conventions for easy manipulation,
reuse, and compatibility with tools.

- Design Pattern: A general solution to common software design problems, offering best practices and
reusable solutions. Examples include creational, structural, and behavioral patterns.

27. How do you handle HTTP request (GET) using servlet?

Handling HTTP GET requests using a servlet involves implementing a servlet class that overrides the
‘doGet()" method. Here’s a step-by-step guide on how to handle GET requests in a servlet:

Steps to Handle HTTP GET Requests

1. Create a Servlet Class:
- Extend the "HttpServlet’ class to create your servlet.

- Override the "doGet()" method to handle GET requests.

2. Configure the Servlet:

- Define the servlet in the "'web.xml" configuration file or use annotations (if using Servlet 3.0 or later) to
map the servlet to a URL pattern.

3. Implement the ‘doGet()" Method:

- In the "doGet()" method, process the request, interact with the model (if needed), and generate the
response.

4. Deploy the Servlet:

- Deploy the servlet in a web container like Apache Tomcat and test it by sending GET requests.

Example Servlet Handling HTTP GET Request

Here's a simple example of a servlet that handles HTTP GET requests:

1. Create the Servlet Class

“java

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class HelloWorldServlet extends HttpServlet {

@Override

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Set the content type of the response

response.setContentType("text/html");

// Write the response to the client
response.getWriter().printIn("<html><body>");
response.getWriter().printin("<h1>Hello, World!</h1>");
response.getWriter().printin("</body></html|>");

}

}

2. Configure the Servlet (web.xml)

In "WEB-INF/web.xml’, define the servlet and map it to a URL pattern:

Sl
<web-app xmlns="http://xmlins.jcp.org/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmins.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_3_ 1.xsd"

version="3.1">

<servlet>
<servlet-name>HelloWorldServlet</servlet-name>
<servlet-class>com.example.HelloWorldServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>HelloWorldServlet</servlet-name>
<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Alternatively, you can use annotations (Servlet 3.0 and later):

“java

import javax.servlet.annotation.WebServlet;

@WebServlet("/hello")
public class HelloWorldServlet extends HttpServlet {

// doGet method as shown earlier

}

3. Deploy and Test

- Deploy the application to a servlet container like Apache Tomcat.

- Access the servlet using a URL like “http://localhost:8080/your-app-context/hello’.

Summary

1. Create a Servlet Class: Extend "HttpServlet’ and override "doGet() .
2. Configure the Servlet: Map the servlet to a URL pattern in ‘web.xml" or using annotations.
3. Implement "doGet(): Handle the request and generate a response.

4. Deploy and Test: Deploy the servlet to a web container and access it via a browser.

This approach allows you to process HTTP GET requests and generate dynamic content in response.

28. What are different layers of RMI architecture? Explain.
Architecture of an RMI Application

In an RMI application, we write two programs, a server program
(resides on the server) and a client program (resides on the client).
e Inside the server program, a remote object is created and
reference of that object is made available for the client (using

the registry).

* The client program requests the remote objects on the server
and tries to invoke its methods.

The following diagram shows the architecture of an RMI application.

e e e Remote Reference Layer

Network connection
Transport Layer Transport Layer

* Transport Layer — This layer connects the client and the server.
It manages the existing connection and also sets up new
connections.

e Stub - A stub is a representation (proxy) of the remote object
at client. It resides in the client system; it acts as a gateway for
the client program.

e Skeleton - This is the object which resides on the server side.
stub communicates with this skeleton to pass request to the
remote object.

* RRL(Remote Reference Layer) - It is the layer which manages

the references made by the client to the remote object.

29.. Write short notes on:
Servlet API
RMI vs CORBA

Servlet API

The Servlet APl is a set of classes and interfaces in Java that allow developers to create web-based
applications. A servlet is a Java class that extends the capabilities of a server and responds to requests from
clients, typically over HTTP.

Key Components of Servlet API:

1. Servlet Interface:

- The core interface that all servlets must implement. The “javax.servlet.Servlet” interface defines the life
cycle methods (Vinit()’, ‘service()’, and ‘destroy()’), which the servlet container calls to manage the servlet's
life cycle.

2. HttpServlet:

- A subclass of "GenericServlet™ that provides methods specifically for handling HTTP requests. The most
commonly used methods are "doGet()" and "doPost()" to handle GET and POST requests respectively.

3. ServletRequest and ServletResponse:

- ‘ServletRequest’: Provides information about the client's request, including parameters, headers, and
attributes.

- "ServletResponse™: Allows the servlet to send a response back to the client, such as HTML content.

4. ServletContext:

- An interface that provides a view of the web application's environment. It allows servlets to share
information and resources, such as application-wide parameters, across different servlets within the same
application.

5. ServletConfig:

- Provides configuration information to the servlet at initialization time, such as initialization parameters
specified in the deployment descriptor (‘web.xml’).

6. Session Management:

- The Servlet API provides session management capabilities through the "HttpSession® interface, allowing
web applications to maintain state across multiple requests from the same client.

7. RequestDispatcher:

- Allows for request forwarding or including content from another resource (such as another servlet or JSP)
within the same web application.

Use Cases:

- Creating dynamic web content, such as generating HTML, processing forms, handling file uploads, and
interacting with databases.

- Managing sessions and cookies to maintain user state across multiple requests.

RMlI vs CORBA

RMI (Remote Method Invocation) and CORBA (Common Object Request Broker Architecture) are both
technologies that allow objects to communicate with each other across different processes, possibly on
different machines. However, they differ in several aspects:

RMI (Remote Method Invocation):

1. Language-Specific:

- RMl is specific to Java. It allows Java objects to invoke methods on other Java objects located on different
JVMs, making it tightly coupled with the Java programming language.

2. Ease of Use:

- RMl is simpler to use within Java applications since it leverages Java's native serialization and type system.
Developers don't need to learn new IDLs (Interface Definition Languages) or protocols.

3. Transport Protocol:

- RMlI uses Java's native networking capabilities, typically over TCP/IP, and uses Java Object Serialization for
marshaling and unmarshaling objects.

4. Java-Centric:

- RMl is limited to environments where both the client and server are implemented in Java. It does not
easily support communication with applications written in other languages.

CORBA (Common Object Request Broker Architecture):

1. Language-Independent:

- CORBA is designed to be language-agnostic. It allows objects written in different programming languages
(e.g., Java, C++, Python) to communicate with each other. This is achieved through the use of an IDL
(Interface Definition Language), which defines the interfaces in a language-neutral way.

2. Complexity:

- CORBA is more complex than RMI, both in terms of setup and usage. Developers must work with IDLs and
understand the underlying ORB (Object Request Broker) architecture.

3. Interoperability:

- CORBA excels in environments where interoperability between different languages and platforms is
required. It is designed to work across different operating systems and network protocols.

4. Transport Protocol:

- CORBA uses the IIOP (Internet Inter-ORB Protocol) for communication, which is a more sophisticated
protocol that supports features like load balancing and fault tolerance.

Summary:

- RMI is best suited for Java-to-Java communication within a homogeneous environment, offering simplicity
and tight integration with Java.

- CORBA is ideal for heterogeneous environments where different programming languages and platforms
need to interact, offering greater flexibility but at the cost of increased complexity.

29. What is the significance of stub and skeleton In RMI? Create a RMI application such that
a client sends an Integer number to the server and the server return the factorial value
of that integer. Give a clear specification for every step. (10)

Significance of Stub and Skeleton in RMI

In Java RMI (Remote Method Invocation), Stub and Skeleton play critical roles in the communication
between a client and a server:

1. Stub (Client-Side Proxy):

- The stub acts as a proxy on the client side. When a client calls a method on a remote object, it is the stub
that actually receives the call.

- The stub is responsible for marshaling (converting) the method arguments into a format that can be sent
over the network to the server.

- It then sends the request to the server, waits for the response, and unmarshals (converts back) the
returned data into a format that the client can understand.

- From the client's perspective, the stub behaves like a local object, hiding the complexities of remote
communication.

2. Skeleton (Server-Side Proxy):

- The skeleton acts as a proxy on the server side (Note: Skeletons were used in earlier versions of RMI, but
starting with Java 2 (Java 1.2), skeletons are no longer needed, as they are replaced by dynamically
generated code).

- The skeleton receives the request from the stub, unmarshals the arguments, and invokes the actual
method on the remote object implementation.

- After the method execution, the skeleton marshals the result and sends it back to the stub on the client
side.

RMI Application Example: Factorial Calculation

Let's create a simple RMI application where a client sends an integer to the server, and the server returns
the factorial of that integer.

Step 1: Define the Remote Interface

The remote interface defines the methods that can be invoked remotely. It extends “java.rmi.Remote” and
each method must throw a "RemoteException’.

“java
import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Factorial extends Remote {
// Method to calculate factorial

int getFactorial(int number) throws RemoteException;

}

Step 2: Implement the Remote Interface on the Server

The server-side implementation of the remote interface provides the actual logic for the remote methods.

“java
import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

public class Factoriallmpl extends UnicastRemoteObject implements Factorial {

// Constructor
protected Factoriallmpl() throws RemoteException {
super();

}

// Implement the method to calculate factorial

@Override

public int getFactorial(int number) throws RemoteException {
int factorial = 1;

for (inti=1;i<=number; i++) {

factorial = i;

}

return factorial;
}

}

Step 3: Create the Server Application

The server application will create an instance of the remote object and bind it to the RMI registry.

“java

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class FactorialServer {

public static void main(String[] args) {

try {

// Create an instance of the remote object

Factoriallmpl factorial = new Factoriallmpl();

// Bind the remote object to the RMI registry
Registry registry = LocateRegistry.createRegistry(1099);

registry.rebind("FactorialService", factorial);

System.out.printIn("Factorial Server is ready.");

} catch (Exception e) {

System.err.printin("Server exception: " + e.toString());
e.printStackTrace();

}

}

Step 4: Create the Client Application

The client application looks up the remote object in the RMI registry and invokes the remote method.

“java

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class FactorialClient {

public static void main(String{] args) {

try {
// Get the registry

Registry registry = LocateRegistry.getRegistry("localhost");

// Lookup the remote object

Factorial stub = (Factorial) registry.lookup("FactorialService");

// Call the remote method

int number = 5;

int result = stub.getFactorial(number);
System.out.printIn("Factorial of " + number + " is: " + result);
} catch (Exception e) {

System.err.printin("Client exception: " + e.toString());
e.printStackTrace();

}

}

Step 5: Compile and Run the Application

1. Compile the Code:
- Compile the Java files:
“sh

javac .java

2. Start the RMI Registry:
- Start the RMI registry on the default port 1099:
“sh

rmiregistry

3. Run the Server:
- Run the server application:
“sh

java FactorialServer

4. Run the Client:
- In a different terminal or command prompt, run the client application:
“sh

java FactorialClient

Summary

- Stub and Skeleton: The stub acts as the client-side proxy that handles the communication with the remote
server, while the skeleton (in older RMI versions) acted as the server-side proxy.

- RMI Application: The application example demonstrates creating a simple RMI application to calculate the
factorial of a number sent by the client to the server. The steps include defining the remote interface,
implementing it, setting up the server, and writing the client to invoke the remote method.

30. You are hired by a reputed software company which is going to design an application
for "Movie Rental System". Your responsibility is to design a schema named MRS and
create a table named Movie(id, Tille, Genre, Language, Length). Write a program to
design a GUI form to take input for this table and insert the data into table after clicking
the OK button (10)

To design a simple Movie Rental System (MRS) application with a table named "Movie’, you will need to:

1. Create the database schema and table.
2. Design a GUI form using Swing to take input.

3. Insert the data into'the database upon-clicking'the "OK" button.

Step 1: Create the Database Schema and Table

First, create the schema and the "Movie’ table in your database. This can be done in any SQL-based
database (e.g., MySQL, PostgreSQL, etc.).

gl
CREATE SCHEMA MRS;

CREATE TABLE MRS.Movie (

id INT PRIMARY KEY AUTO_INCREMENT,
Title VARCHAR(100),

Genre VARCHAR(50),

Language VARCHAR(50),

Length INT

);

Step 2: Design the GUI Form Using Swing

Next, we'll design the Java Swing GUI form. The form will have fields to enter the ‘Title’, "Genre’,
‘Language’, and ‘Length’ of the movie, and a button to insert this data into the "Movie" table.

Step 3: Java Program to Insert Data into the Database

Here’s a Java program that creates the GUI and inserts the data into the database when the "OK" button is
clicked:

“java

import javax.swing.;
import java.awt.;
import java.awt.event,;

import java.sql.;

public class MovieRentalSystem extends JFrame {

// Components of the GUI
private JTextField titleField, genreField, languageField, lengthField;

private JButton okButton;

// Database URL, Username, and Password
static final String DB_URL = "jdbc:mysql://localhost:3306/MRS"; // Change to your database URL
static final String USER = "root"; // Change to your database username

static final String PASS = "password"; // Change to your database password

public MovieRentalSystem() {

// Setting up the frame

setTitle("Movie Rental System");
setLayout(new GridLayout(5, 2, 10, 10));

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Adding GUI components
add(new JLabel("Title:"));
titleField = new JTextField(20);

add(titleField);

add(new JLabel("Genre:"));
genreField = new JTextField(20);

add(genreField);
add(new JLabel("Language:"));
languageField = new JTextField(20);

add(languageField);

add(new JLabel("Length (minutes):"));

lengthField = new JTextField(20);

add(lengthField);

okButton = new JButton("OK");

add(okButton);

// Button action listener
okButton.addActionListener(new ActionListener() {
@Override

public void actionPerformed(ActionEvent e) {
insertMovieData();

}

1;

pack(); // Pack the frame to fit all components

setVisible(true); // Set the frame visible

}

// Method to insert movie data into the database
private void insertMovieData() {

String title = titleField.getText();

String genre = genreField.getText();

String language = languageField.getText();

int length = Integer.parselnt(lengthField.getText());

Connection conn = null;

PreparedStatement pstmt = null;

try {

// Register JDBC driver and open a connection

conn = DriverManager.getConnection(DB_URL, USER, PASS);

// Create SQL insert statement

String sql = "INSERT INTO Movie (Title, Genre, Language, Length) VALUES (?, ?, ?, ?)";
pstmt = conn.prepareStatement(sql);

pstmt.setString(1, title);

pstmt.setString(2, genre);

pstmt.setString(3, language);

pstmt.setint(4, length);

// Execute the insert statement
pstmt.executeUpdate();

JOptionPane.showMessageDialog(this, "Movie data inserted successfully!");

} catch (SQLException se) {
se.printStackTrace();
JOptionPane.showMessageDialog(this, "Error inserting data.");
} finally {

try {

if (pstmt != null) pstmt.close();
if (conn != null) conn.close();

} catch (SQLException se) {
se.printStackTrace();

}

}

}

// Main method to run the application
public static void main(String[] args) {
SwingUrtilities.invokelater(new Runnable() {
public void run() {

new MovieRentalSystem();

}

1;

31. Describe the responsibility of Serializable interface.

The Serializable interface in Java is a marker interface that indicates that a class can be serialized.
Serialization is the process of converting an object's state into a byte stream, which can then be stored in a
file, sent over a network, or saved to a database. The reverse process, deserialization, reconstructs the
object from the byte stream.

Responsibilities of the “Serializable™ Interface:

1. Enable Serialization of Objects:

- By implementing the “Serializable™ interface, a class indicates that its instances can be serialized. This
allows objects of that class to be converted into a byte stream, preserving their state.

2. Enable Deserialization:

- When a class implements “Serializable’, its objects can be deserialized, which means they can be
reconstructed from the byte stream into a copy of the original object.

3. Compatibility Across Systems:

- Serialization allows objects to be transmitted across different JVMs (Java Virtual Machines) or saved and
restored across different sessions. This is particularly useful for distributed systems, where objects need to
be passed between different components of a system, potentially running on different machines.

4. Customization of Serialization:

- Although “Serializable™ itself does not contain any methods (as it is a marker interface), it provides hooks
for customization. A class can define the following methods to control the serialization process:

- "private void writeObject(ObjectOutputStream oos) throws IOException’: Customize the serialization
process by writing to the "ObjectOutputStream’.

- ‘private void readObject(ObjectinputStream ois) throws IOException, ClassNotFoundException':
Customize the deserialization process by reading from the "ObjectInputStream’.

5. Security and Data Integrity:

- By controlling which classes can be serialized, developers can manage security concerns related to object
serialization, such as preventing sensitive information from being serialized inadvertently.

Example:

“java

import java.io.Serializable;

public class Employee implements Serializable {

private static final long serialVersionUID = 1L; // Optional, but recommended for version control

private String name;

private int id;

public Employee(String name, int id) {
this.name = name;

this.id = id;

}

// Getters and setters

}

Summary:

The “Serializable™ interface is crucial in Java for enabling the conversion of objects to a byte stream and vice
versa, facilitating persistent storage, and transmission of objects across networks. Implementing this
interface allows a class's instances to be easily saved, transferred, and reconstructed.

32. Compare AWT with Swing. Write a GUI program using components to find sum and
difference of two numbers.Use two text fields for giving input and a label for.output.

The program should display sum if user presses-mouse and difference if user release

mouse.(2+8)

Comparison Between AWT and Swing

AWT (Abstract Window Toolkit) and Swing are both used for building graphical user interfaces (GUIs) in Java,
but they differ in several key aspects:

| Aspect | AWT | Swing
| I | |

| Component Type | AWT components are heavyweight, meaning they rely on the native system's GUI
controls. | Swing components are lightweight and written entirely in Java, providing more flexibility and
control. |

| Look and Feel | AWT components have a look and feel that is dependent on the native operating system.
| Swing allows for a pluggable look and feel that can be consistent across different platforms. |

| Performance | AWT is generally faster for simple interfaces but may be less flexible for complex Uls. |
Swing is more versatile and capable of creating more complex, customizable interfaces, but might be slower.

| Event Handling | AWT uses the older event model that is less powerful and flexible. | Swing uses a more
advanced event-handling mechanism, including ActionListeners and other features. |

| Components | Limited number of components. | Richer set of components (JButton, JTextField, JLabel,
JTable, etc.). |

| Extensibility | Less extensible due to reliance on native system components. | Highly extensible with a
wide range of built-in and third-party components. |

GUI Program Using Swing to Find Sum and Difference of Two Numbers

Below is a Java program that creates a Swing-based GUI. It uses two text fields for input and a label for
displaying the result. The program computes the sum when the user presses the mouse and computes the
difference when the user releases the mouse.

“java
import javax.swing.;
import java.awt.;

import java.awt.event.;

public class SumDifferenceCalculator extends JFrame {

// Components of the GUI
private JTextField textFieldl, textField2;

private JLabel resultLabel;

public SumDifferenceCalculator() {

// Setting up the frame

setTitle("Sum and Difference Calculator");
setLayout(new FlowLayout());

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Initialize components
textField1 = new JTextField(10);
textField2 = new JTextField(10);

resultLabel = new JLabel("Result: ");

// Add components to the frame
add(new JLabel("Number 1:"));
add(textField1);

add(new JLabel("Number 2:"));
add(textField2);

add(resultLabel);

// Mouse listener for handling mouse press and release events
MouseAdapter mouseAdapter = new MouseAdapter() {
@Override

public void mousePressed(MouseEvent e) {

calculateSum();

}

@Override
public void mouseReleased(MouseEvent e) {

calculateDifference();

// Attach mouse listener to the frame

addMouselistener(mouseAdapter);

pack(); // Pack the frame to fit all components
setVisible(true); // Set the frame visible

}

// Method to calculate the sum of the two numbers
private void calculateSum() {

try {

int num1 = Integer.parselnt(textField1.getText());
int num2 = Integer.parselnt(textField2.getText());
int sum = num1 + num2;
resultLabel.setText("Result: Sum =" + sum);

} catch (NumberFormatException ex) {
resultLabel.setText("Invalid input!");

}

}

// Method to calculate the difference between the two numbers
private void calculateDifference() {

try {

int num1 = Integer.parselnt(textField1.getText());

int num2 = Integer.parselnt(textField2.getText());

int difference = num1 - num2;

resultLabel.setText("Result: Difference =" + difference);

} catch (NumberFormatException ex) {

resultLabel.setText("Invalid input!");

}

// Main method to run the application
public static void main(String[] args) {
SwingUrtilities.invokelater(new Runnable() {
public void run() {

new SumDifferenceCalculator();

}

});

33. Explain life-cycle of servlet in detail.Create a simple servlet that reads and displaysdata
from HTML form. Assume form with two fields username and password.(5+5)

Life Cycle of a Servlet

A servlet life cycle can be defined as the entire process from its creation till the destruction.
1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

1.Load servletclass .

2.Create serviet instance

1.Call the init{-) method

———

4.call the service[-,-) READY
method it

5.Call the destroy()

method
As displayed in the above diagram, there are three states of a servlet: new, ready and end.
The servlet is in new state if servlet instance is created. After invoking the init() method,
Servlet comes in the ready state. In the ready state, servlet performs all the tasks. When the
web container invokes the destroy() method, it shifts to the end state.
1) Servlet class is loaded
The classloader is responsible to load the servlet class. The servlet class is loaded when the
first request for the servlet is received by the web container.
2) Servlet instance is created
The web container creates the instance of a servlet after loading the servlet class. The

servlet instance is created only once in the servlet life cycle.

3) init method is invoked

The web container calls the init method only once after creating the servlet instance. The
init method is used to initialize the servlet. It is the life cycle method of the
javax.servlet.Servlet interface. Syntax of the init method is given below:

public void init(ServletConfig config) throws ServletException

4) service method is invoked

The web container calls the service method each time when request for the servlet is
received. If servlet is not initialized, it follows the first three steps as described above then

calls the service method. If servlet.is initialized, it calls the.service method. Notice that

servlet is initialized only once. The syntax of the service method of the Servlet interface is
given below:

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

5) destroy method is invoked

The web container calls the destroy method before removing the servlet instance from the
service. It gives the servlet an opportunity to clean up any resource for example memory,
thread etc. The syntax of the destroy method of the Servlet interface is given below:

public void destroy()

Simple Servlet Example: Reading Data from an HTML Form

Here's how you can create a simple servlet that reads and displays data from an HTML form with two fields:
username and password.

HTML Form (index.html):

html

Copy code

<IDOCTYPE html>

<html|>

<head>

<title>Login Form</title>

</head>

<body>

<form action="LoginServlet" method="POST">

<label for="username">Username:</label>

<input type="text" id="username" name="username">

<label for="password">Password:</label>

<input type="password" id="password" name="password">

<input type="submit" value="Submit">

</form>

</body>

</html>

Servlet Code (LoginServiet.java):

java

Copy code

import java.io.;
import javax.servlet.;

import javax.servlet.http.;

public class LoginServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Set response content type
response.setContentType("text/html");

PrintWriter out = response.getWriter();

// Read form data
String username = request.getParameter("username");

String password = request.getParameter("password");

// Display the data

out.printIn("<html><body>");
out.printin("<h2>Login Details</h2>");
out.printin("<p>Username: " + username + "</p>");
out.println("<p>Password: " + password + "</p>");
out.printin("</body></htmI>");

}

}

34. Explain RMI architecture layers in detail. Write a Java programs using RMI to find

product of two numbers.(4+6)

RMI stands for Remote Method Invocation. It is a mechanism that
allows an object residing in one system (JVM) to access/invoke an
object running on another JVM.

RMl is used to build distributed applications; it provides remote
communication between Java programs. It is provided in the package
java.rmi.

Following are the goals of RMI -

* To minimize the complexity of the application.

* To preserve type safety.

e Distributed garbage collection.

e Minimize the difference between working with local and

remote objects.

Architecture of an RMI Application

In an RMI application, we write two programs, a server program
(resides on the server) and a client program (resides on the client).
e Inside the server program, a remote object is created and
reference of that object is made available for the client (using

the registry).

* The client program requests the remote objects on the server
and tries to invoke its methods.

The following diagram shows the architecture of an RMI application.

Server

m

¢ -
|

l\l'ir‘lt.la.l. c.onmu:ll_inn

L : e [:1:18 Remote Reference Layer

Metwork connection

{
g
b
3
&
v

Transport Layer

Transport Layer - This layer connects the client and the server.

It manages the existing connection and also sets up new

connections.

e Stub - A stub is a representation (proxy) of the remote object
at client. It resides in the client system; it acts as a gateway for
the client program.

e Skeleton - This is the object which resides on the server side.
stub communicates with this skeleton to pass request to the
remote object.

* RRL(Remote Reference Layer) - It is the layer which manages

the references made by the client to the remote object.

Java Program Using RMI to Find the Product of Two Numbers

Below is a step-by-step guide to create a simple RMI application that calculates the product of two
numbers.

Step 1: Define the Remote Interface

Create an interface that declares the method to calculate the product. This interface must extend
java.rmi.Remote.

java
Copy code
import java.rmi.Remote;

import java.rmi.RemoteException;

// Remote Interface

public interface Product extends Remote {

// Method to calculate product of two numbers

public int multiply(int a, int b) throws RemoteException;
}

Step 2: Implement the Remote Interface

Create a class that implements the remote interface. This class provides the actual implementation of the
remote method.

java
Copy code
import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

// Implementation of the remote interface

public class Productimpl extends UnicastRemoteObject implements Product {
// Constructor

protected Productimpl() throws RemoteException {

super();

}

// Implementation of the multiply method

public int multiply(int a, int b) throws RemoteException {
returna b;

}

}

Step 3: Create the Server

Write the server code to register the remote object with the RMI registry.
java

Copy code

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class ProductServer {

public static void main(String[] args) {

try {

// Create an instance of the Productimpl class

Productimpl obj = new Productimpl();

// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.createRegistry(1099); // Default port 1099

registry.bind("Product", obj);

System.out.printIn("Product Server is ready.");

} catch (Exception e) {

System.out.printIn("Product Server failed: " + e);
}
}

}
Step 4: Create the Client

Write the client code that looks up the remote object in the RMI registry and invokes the remote method.
java
import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class ProductClient {

public static void main(String[] args) {

try {

// Locate the registry at localhost and default port 1099

Registry registry = LocateRegistry.getRegistry("localhost", 1099);

// Look up the remote object "Product" in the registry

Product stub = (Product) registry.lookup("Product");

// Call the multiply method

int result = stub.multiply(5, 7);
System.out.printIn("Product of 5 and 7 is: " + result);
} catch (Exception e) {

System.out.printin("Product Client exception: " + e);
}

}

35. What is package? How can you create your-own package in Java? ;Explain with

example.(1+4)

What is a Package in Java?

A package in Java is a namespace that organizes a set of related classes and interfaces. Packages help avoid
name conflicts and make it easier to locate and use the classes, interfaces, and sub-packages within your
program. They also provide access control and can contain hidden classes that are used only within the
package and are not accessible to classes outside the package.

Creating Your Own Package in Java

To create your own package in Java, follow these steps:

1. Define a Package:

- Use the “package’ keyword at the beginning of your Java source file.

- All the classes and interfaces defined in this file will belong to the specified package.

2. Compile the Package:

- Compile the Java file using the “javac’ command.

- The compiled ".class’ files will be placed in a directory structure matching the package name.

3. Use the Package:

- To use the classes and interfaces from your package, you can import them into other classes using the
‘import’ statement.

Example: Creating and Using a Custom Package

Step 1: Create a Package

Let's say you want to create a package named ‘'mypackage” that contains a class ‘Rectangle’.

Rectangle.java:

““java

// Step 1: Define the package

package mypackage;

public class Rectangle {
private int length;

private int width;

// Constructor

public Rectangle(int length, int width) {
this.length = length;

this.width = width;

}

// Method to calculate area
public int getArea() {

return length width;

}
}

Step 2: Compile the Package

- Compile the "Rectangle.java’ file. This will create the ‘mypackage” directory with the ‘Rectangle.class’ file
inside it.

““bash

javac Rectangle.java

Step 3: Use the Package in Another Program

Now, create a new Java file in the same directory or a different directory that uses the ‘Rectangle” class
from the "'mypackage’.

TestRectangle.java:
“java
// Step 1: Import the package

import mypackage.Rectangle;

public class TestRectangle {
public static void main(String[] args) {
// Step 2: Create an instance of Rectangle

Rectangle rect = new Rectangle(10, 5);

// Step 3: Use the method from Rectangle class
int area = rect.getArea();
System.out.printin("The area of the rectangle is: " + area);

}
}

Step 4: Compile and Run the Program

- Compile ‘TestRectangle.java':

““bash

javac TestRectangle.java

- Run the program:

““bash

java TestRectangle

- Output:
““bash

The area of the rectangle is: 50

Summary:

- Package: A namespace that organizes related classes and interfaces.

- Creating a Package: Use the “package’ keyword, then compile and organize your classes within that
package.

- Using a Package: Import the package using the ‘import” statement and then use its classes or interfaces in
your application.

36. Why do we need swing components? Explain the uses of check boxes and radio
buttons in GUI programming. (2+3)

Why Do We Need Swing Components?

Swing components are essential for building modern, flexible, and rich graphical user interfaces (GUIs) in
Java. They offer more advanced features, better look and feel, and greater flexibility compared to AWT,
allowing developers to create more sophisticated and visually appealing applications.

Uses of Check Boxes and Radio Buttons in GUI Programming

- Check Boxes:
- Allow users to select multiple options independently.

- Useful for scenarios where more than one option can be chosen, such as selecting multiple hobbies or
preferences.

- Radio Buttons:

- Allow users to select only,one .option.from-a group:

- Ideal for scenarios where a single choice is required, such as choosing a gender or selecting a payment
method.

37. How can we use listener interface to handle events? Compare listener interface with
adapter class. (3+2)

Using Listener Interface to Handle Events

In Java GUI programming, listener interfaces are used to handle events such as button clicks or mouse
movements. You implement these interfaces to define how your application should respond to various user
actions. Here's a brief overview:

1. Implement the Listener Interface:

- Create a class that implements one or more listener interfaces (e.g., "ActionListener’, "MouselListener?).

2. Override the Event-Handling Methods:

- Provide concrete implementations for the methods defined in the listener interfaces (e.g.,
‘actionPerformed" for "ActionListener’).

3. Register the Listener:

- Add an instance of your class to the component you want to listen to using methods like
‘addActionListener’, ‘'addMouselListener’, etc.

Example:

“java
import javax.swing.;
import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ButtonExample implements ActionListener {

private JButton button;

public ButtonExample() {

JFrame frame = new JFrame("Button Example");

button = new JButton("Click Me");
button.addActionListener(this); // Register listener
frame.add(button);

frame.setSize(200, 200);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

}

@Override
public void actionPerformed(ActionEvent e) {

button.setText("Clicked!");

}

public static void main(String[] args) {

new ButtonExample();

}
}

Comparing Listener Interface and Adapter Class

Listener Interface:
- Definition: A listener interface defines one or more methods for handling specific events.

- Usage: You must implement all methods of the interface, which can lead to verbose code if you only need
to handle a few methods.

- Flexibility: More flexible when handling multiple types of events, as you can implement several interfaces
in a single class.

Adapter Class:

- Definition: An adapter class provides default (empty) implementations of all methods in the
corresponding listener interface.

- Usage: You can extend the adapter class and override only the methods you need, reducing boilerplate
code.

- Flexibility: More concise and easier to use if you need to handle only a few events from the interface.

Example:

Using Listener Interface:
“java
import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class MyActionListener implements ActionListener {
@Override

public void actionPerformed(ActionEvent e) {

// Handle action

}

}

Using Adapter Class:
“java
import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

public class MyMouseAdapter extends MouseAdapter {
@Override

public void mouseClicked(MouseEvent e) {

// Handle mouse click

}

}

Summary:

- Listener Interface: Directly implements methods to handle events but may require implementing multiple
methods.

- Adapter Class: Provides default implementations to simplify code by overriding only the methods you
need.

38. What is row set? Explain cached row set in detail.(1+4)

What is a RowSet?

A RowSet is a type of JDBC object that extends the capabilities of a "ResultSet” by providing additional
features such as connectivity, scrollability, and updatability. Unlike a "ResultSet’, a 'RowSet" can be
disconnected from the database, which allows it to work offline.

Cached RowSet

CachedRowsSet is a type of 'RowSet" that provides a disconnected operation, meaning it can be used
without an active connection to the database. It stores its data in memory and can be used to work with
the data offline.

Features of CachedRowSet:

1. Disconnected Operation: It can be created, manipulated, and then reconnected to the database when
needed, allowing offline data handling.

2. Serialization: CachedRowSet can be serialized, making it possible to save the data to disk and reload it
later.

3. Concurrency Control: It allows modifications to be made to the data while disconnected, and these
changes can be synchronized back to the database.

4. Scrolling and Updating: Provides support for scrolling through rows and updating data, even when
disconnected.

Example:

“java
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetProvider;

import java.sql.;

public class CachedRowSetExample {
public static void main(String[] args) {
try {

// Create a CachedRowSet object

CachedRowsSet crs = RowSetProvider.newFactory().createCachedRowsSet();

// Connect to the database

nn

Connection conn = DriverManager.getConnection("jdbc:yourdriver:yourdb", "username", "password");

// Set the SQL query
crs.setCommand("SELECT FROM your_table");

crs.execute(conn);

// Work with data
while (crs.next()) {
System.out.printin(crs.getString("column_name"));

}

// Modify data
crs.moveTolnsertRow();

crs.updateString("column_name", "new_value");

crs.insertRow();

// Update the database

crs.moveToCurrentRow();

crs.acceptChanges(conn);

// Clean up

conn.close();

} catch (SQLException e) {
e.printStackTrace();

}

}

Summary:
- RowSet: Extends "ResultSet” with additional features.

- CachedRowSet: Allows disconnected operations, supports serialization, and enables offline data
manipulation.

39. What is serviet? Write a simple JSP file to display "Tribhuwan University" five times.
(2+3)

What is a Servlet?

A Servlet is a Java programming class that handles HTTP requests and responses in a web application. It
operates on the server side and is used to extend the capabilities of servers. Servlets can process requests,
generate dynamic content, and manage session data. They are a core component of Java EE (Enterprise
Edition) for web applications.

Simple JSP File to Display "Tribhuvan University" Five Times

Here is a simple JSP (JavaServer Pages) file that displays "Tribhuvan University" five times:

“display.jsp:

“isp
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<IDOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Display Message</title>

</head>

<body>

<%

// Loop to display the message five times

for (inti=0;i<5;i++) {

out.printIn("Tribhuvan University
");

}

%>

</body>

</html>

Explanation:
- <% @ page ... %>": Directives that define page-level settings like content type and character encoding.
- <% ... %>": Scriptlet that allows embedding Java code within the JSP page.

- “out.printin(...)": Outputs text to the client.

Usage:
1. Save this code in a file named “display.jsp".
2. Deploy the JSP file in a servlet container (like Apache Tomcat).

3. Access the JSP page via a web browser to see the output.

40. Why CORBA is impartant? Compare CORBA with RMI. (3+2)

Importance of CORBA

CORBA (Common Object Request Broker Architecture) is important because it provides a framework for
enabling communication between objects in different programming languages and across different
platforms. This interoperability makes it easier for heterogeneous systems to work together in distributed
computing environments. Key benefits include:

1. Language and Platform Independence: CORBA allows objects written in different languages to
communicate, promoting integration across diverse systems.

2. Scalability: It supports distributed systems and helps in scaling applications across multiple servers.

3. Standardization: CORBA provides a standardized approach to object communication, which helps in
building complex systems with consistent interfaces.

Comparison of CORBA and RMI

| Feature | CORBA | RMI
| I I I

| Language Support | Supports multiple programming languages (e.g., Java, C++, Python). | Primarily
designed for Java-to-Java communication. |

| Platform Independence| Designed to work across different platforms and operating systems. | Generally
used in Java environments, with limited cross-platform support. |

| Complexity | More complex due to its broad range of features and specifications. | Simpler and
easier to use within Java environments. |

| Standard | Based on OMG (Object Management Group) standards. | Based on Java's own
specifications and standards. |

| Interoperability | Provides interoperability between different languages and platforms. | Limited to
Java-to-Java communication. |

Summary:

- CORBA: Provides broad interoperability across different languages and platforms with a more complex
setup.

- RMI: Simplifies distributed communication within Java environments but lacks cross-language and cross-
platform support.

41. Write short notes on: (22.5 = 5)
a. JDBC drivers

b. Java server pages

a. JDBC Drivers

JDBC Drivers are components that enable Java applications to interact with databases via the Java Database
Connectivity (JDBC) API. They translate Java calls into database-specific calls. There are four types of JDBC
drivers:

1. Type 1: JDBC-ODBC Bridge Driver:
- Uses ODBC (Open Database Connectivity) drivers to connect to databases.

- Disadvantage: Requires ODBC driver and is generally slower and less efficient.

2. Type 2: Native-API Driver:
- Converts JDBC calls into database-specific calls using native API libraries.

- Advantage: Faster than Type 1 but requires native database libraries.

3. Type 3: Network Protocol Driver:

- Translates JDBC calls into a database-independent network protocol, which is then translated into
database-specific calls by a server-side component.

- Advantage: Can work with multiple databases and is more flexible.

4. Type 4: Thin Driver:

- Directly converts JDBC calls into database-specific protocol calls, without needing additional software.

- Advantage: Efficient and platform-independent.

b. JavaServer Pages (JSP)

JavaServer Pages (JSP) is a technology used for creating dynamic web content. JSP allows embedding Java
code directly into HTML pages, which is compiled into servlets by the server. Here are some key aspects:

1. Simplified Syntax:

- JSP syntax is similar to HTML, with embedded Java code within special tags (‘<% %>"). This makes it easier
to create dynamic web content compared to writing pure servlets.

2. Separation of Concerns:

- JSP separates the presentation layer from business logic. It allows developers to design the HTML
structure while keeping Java code for dynamic content generation separate.

3. Standard Tags and Libraries:

- JSP supports standard tags for common tasks (JSP Standard Tag Library - JSTL) and custom tags for
extending functionality.

4. Compilation:

- JSP pages are compiled into servlets by the web server (e.g., Apache Tomcat) before being executed,
providing the benefits of servlet-based processing with an easier-to-write syntax.

In summary, JDBC Drivers are crucial for database connectivity in Java applications, and JSP provides a
streamlined way to generate dynamic web content by embedding Java code in HTML.

